TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries
نویسندگان
چکیده
Anatase TiO2 modified FeS nanowires assembled by numerous nanosheets were synthesized by using a typical hydrothermal method. The carbon-free nanocoated composite electrodes exhibit improved reversible capacity of 510 mAh g(-1) after 100 discharge/charge cycles at 200 mA g(-1), much higher than that of the pristine FeS nanostructures, and long-term cycling stability with little performance degradation even after 500 discharge/charge cycles at current density of 400 mA g(-1). Full batteries fabricated using the FeS@TiO2 nanostructures anode and the LiMn2O4 nanowires cathode with excellent stability, and good rate capacities could also be achieved. The enhanced electrochemical performance of the composite electrodes can be attributed to the improved conductively of the integrated electrodes and the enhanced kinetics of lithium insertion/extraction at the electrode/electrolyte interface because of the incorporation of anatase TiO2 phase.
منابع مشابه
Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery
In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...
متن کاملFabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage.
MoS2 nanosheet@TiO2 nanotube hybrid nanostructures were successfully prepared by a facile two-step method: prefabrication of porous TiO2 nanotubes based on a sol-gel method template against polymeric nanotubes, and then assembly of MoS2 nanoclusters that consist of ultrathin nanosheets through a solvothermal process. These hybrid nanostructures were characterized by scanning electron microscopy...
متن کاملImproved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملImproving the performance of Lithium-Sulfur Batteries using Sulfur-(TiO2/SiO2) yolk–shell Nanostructure
Lithium-Sulfur (Li-S) batteries are considered as one of the promising candidates for next-generation Li batteries in near future. Although, these batteries are suffering from certain drawbacks such as rapid capacity fading during the charge and discharge process due to the dissolution of polysulfides. In this paper, Sulfur/metal oxide (TiO2 and SiO2) yolk–shell structures have been successfull...
متن کاملAn Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کامل